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Abstract—We designed and implemented an efficient tough 

random symmetric 3-SAT generator and propose two 

deterministic algorithms that efficiently generate 3-SAT instances 

with a unique solution. We quantify the first algorithms hardness 

in terms of CPU time, numbers of restarts, decisions, 

propagations, conflicts and conflicted literals that occur when a 

solver tries to solve 3-SAT instances. In this experiment, the 

clause variable ratio was chosen to be around the conventional 

critical phase transition number 4.24. The experiment shows that 

instances generated by our generator are significantly harder 

than instances generated by the Tough K-SAT generator. The 

two deterministic algorithms generate 3-SAT instances with the 

number of clauses scaling as 4n, where n is the number of 

variables, and (n+6), respectively. By combining these two 

algorithms along with a simple padding algorithm, we prove a 

hybrid algorithm that can generate n-variable instances with the 

number of clauses that scale between (n+6) and 7n(n-1)(n-2). 

Overall, all proposed SAT generators seek to explore unique 

difficult to solve SAT problems. 

 

  Keywords—3-SAT, Satisfiability, Efficient Tough Random 

Symmetric 3-SAT Generator, Tunable Unique-Solution, Critical 

Phase Transition    
I. INTRODUCTION 

 

HE 3-satisfiability problem (3-SAT) can be succinctly 

summarized as follows: find an n-binary-variable 

configuration to satisfy a conjunction of clauses with each 

being a disjunction of three literals. 3-SAT is a widely studied 
problem for a multitude of reasons. Primarily, it plays a 

crucial role in the historical development of theoretical 

computer science. For instance, it was the first identified 

Nondeterministic Polynomial complete (NP-

complete)problem,[1], [2] and it is one of the most well-

studied examples in the inter-disciplinary research program 

involving combinatorial optimization [3], [4], computer 

science, and statistical physics [5], [6]. Theoretical 

developments aside, the 3-SAT problem also plays a critical 

role in many applications such as model checking, planning in 

artificial intelligences and software verifications. Hence, for 
both theoretical and practical reasons, there are many strong 

motivations to devise more efficient algorithms to attack such 

a problem.  
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II. PROBLEM STATEMENT & MOTIVATION  

 

By invoking statistical physics methods and concepts we have 
built a comprehensive picture of the complex structures that 

embody the classical 3-SAT problem. For instance, the 

concept of phase transitions in statistical physics has been 

adopted to elucidate the SAT-UNSAT phase transition of 3-

SAT problems. In this statistical framework, the ratio 

parameter, 

                 (1) 

 

for the phase transition is taken to be the ratio of the number 

of clauses     to the number of 

variables    . The critical value of this order parameter is 

 

    4.2           (2) 

 

 [7],[8]which clearly drawsa boundary in the space of all 3-

SAT instances. On one side of this boundary where      
most instances are unsatisfiable. On the other side of this 

boundary, most problems are satisfiable. 

 
A. Tough Random Symmetric 3-SAT 

 

Via our Efficient Tough Random Symmetric 3-

SATgenerator (ETRSG) we explore 3-SAT problems with a 

critical phase transition value of 4.24 in comparison to 3-SAT 

problems generated by a Tough Random K-SAT Generator 

(TSG) to better understand how the critical phase transition 

value effects solvability of symmetric 3-SAT Problems. 

Studying this specific subset of 3-SAT problems will allow for 

further research into solving SAT problems more efficiently. 

 

B. Tunable Unique-Solution 3-SAT 
 

The Unique-PT1 & Unique-PT4 algorithms can generate 3-

SAT instances with a wide range of values for the order 

parameter  , i.e. we can have various ratios of number of 

clauses to the number of variables. This is a critical point as 

the earlier numerical investigations [9] did not conclude what 

could be an optimal value of   (with respect to  ) to increase 

the chance that a random generation algorithm could output  
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such a hard problem. For our ongoing investigations (to be 

reported in a separate study), we would attempt to clarify the 

optimality of   with respect to   (number of variables). 

 

III. BACKGROUND 

 

A. ETRSG and TSG 

 

The commonly used parameters for SAT solvers and 

generators are:   : the number of variables,  : the number of 

clauses,  : the ratio, which is determined by    . For the 

efficient tough random symmetric 3-SAT generator, the 

formula   is of   variables with the ratio number   that should 

have     clauses. In this work, we choose   to be the phase 

transition number 4.24. Since each clause has 3 literals in all 

3-SAT problems each variable is expected to appear 

approximately       times in    
 

Tough SAT Generator is one of the more competitive 

generators used for generating tough SAT instances. We 

would like to compare the toughness of instances generated by 

our generator and TSG in the following categories: (a) 

frustrations caused by the generator to the SAT solver and (b) 

probability of generating instances that have at least one 

solution and by extension are solvable. The frustration rate can 

be quantified by the resources used by the solver, such as CPU 

time, restarts, conflicts and decisions. The probability can be 

quantified by the ratio between instances with solutions and 
the total instances generated by the generator.  

 

The contribution of this part of the work is to devise a way 

to generate harder 3-SAT problems and verify their hardness. 

We seek to generate harder instances more reliably and 

efficiently. The hardness is quantified by the measures given 

by the solver the instances require the solver to consume more 

resources and make more modifications. Our ETRSG 

algorithm is more reliable as it generates problems with a 

higher probability of being solvable. Our algorithm is also 

efficient as the generation process is almost linear time. 

 
B. Unique-PT1 & Unique-PT4 

 

Unique-PT1 & Unique-PT4, employ a naive approach that 

turns out to be a suitable algorithm to be run on an adiabatic 

quantum computer (AQC), such as D-Wave's quantum 

annealing approach [10], [11]. As such these algorithms will 

be considered separately in this work as they are inspired by 

our recent attempt to analyze the performance of AQC on 

solving 3-SAT problems. 

 

For technical reasons, theoretical estimates of the AQC run-
time can be more elegantly done if we are confined to unique-

solution instances (i.e. if we only consider 3-SAT cases with a 

unique solution). We emphasize that the need to consider 

unique-solution instances is by no means a limitation on the 

computational capability of an AQC; rather it just makes the 

theoretical analyses easier. Nevertheless, this severe restriction 

has initially concerned us as the difficulty of 3-SAT instances 

surrounding a SAT-UNSAT phase transition is an “average" 

(or statistical) property of all problems close to this order 

parameter around 4:2 in the problem space [7], [8]. There is no  

theoretical analysis implying (with high probability) one 

would be able to randomly generate “difficult instances" when 
restricted to such a small subset of all problems surrounding 

the critical value (       ) of the order parameter. This 

concern has apparently affected other researchers looking into 

similar issues with AQC. Much to our delight, in our quest to 

clarify the hardness of unique-solution problems, we have 

come across a set of recently identified “hard" problems [9] in 

this subspace. These problems can be colloquially described as 

“3-SAT instances with a unique solution while having many 

configurations violating just few clauses". In the energy-

counting point of view, a large fraction of the configurations 

are squeezed to a small window of energy values right above 
the zero-energy state (the unique solution). This colloquial 

description certainly reminds one of the notorious protein 

folding problem [12]. Furthermore, to the contrary of 

conventional wisdom, extensive numerical investigations 

indicated these unique-solution hard instances are more easily 

found when the order parameter is smaller than the critical 

value (i.e.  <  ). 

 

IV. ALGORITHMS 
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A. ETRSG & TSG Algorithms 

 

In following paragraph, we describe the TSG algorithm 

(alg.1) and our efficient tough random symmetric 3-SAT 

generator (ETRSG) algorithm (alg. 2). They can both generate 

SAT instances efficiently in almost linear time. 

 

The TSG algorithm generates   clauses sequentially. In the 

3-SAT case, each clause is generated by randomly picking 3 
variables from the variable list and with 0.5 probability of 

negating the chosen variable. With the disjunction of the 

literals, a clause is formed, and the problem is complete. 

 

The ETRSG algorithm also generates   clauses 

sequentially. But initially it must generate a big sequence    

that is of    subsequences. Each subsequence is a random 

arrangement of   variables. To avoid adjacent subsequences 

from forming an invalid clause, such as duplicated variables or 

literals, we must call the RndGen-Verif subroutine (alg. 3) to 

ensure its validity. If two adjacent sequences are jointly 
required to produce a clause, the ETRSG algorithm checks the 

adjacent subsequences    and      to make sure a variable 

would not appear more than once in that clause. 

 

Once    , of length      , is generated, each variable 

appears     times and then we can generate   clauses 

sequentially from position 1 until position    of    . For each 

position we also randomly assign the negation operation. 

 

B. Choice of Recurrence Number 

 

The recurrence number   in ETRSG determines the number of 

times each variable must appear in the formula. In this paper, 

  is chosen based on selecting the ratio number   close to the 
well-known phase transition number 4.24. A phase transition  

[5], [6] is a concept utilized in statistical physics but it can also 

be used to explain satisfiable and unsatisfiable transitions in 3-

SAT problems. However, even instances within the critical 

phase transition number may be easy to solve when a modern 

SAT solver is used. overall, we use 4.24 as our phase 

transition number because that could be where more tough 3-

SAT instances exist. 

 

The subset of SAT problems with a critical phase transition 

number of 4.24 may be exponentially rare among 3-SAT 
instances [9]. One of the major goals of this experiment is to 

figure out some of those exponentially rare instances and 

characterize them. The critical phase transition number is one 

of the characteristics of hard to solve 3-SAT instances. In this 

experiment, we chose    4, 4.24 and 5. The rationale is that 

SAT instances with a ratio number greater than the critical 

phase transition number will almost always be rejected as 
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there is no likely solution. SAT instances with a ratio number 

smaller than the critical phase transition number will likely 

have many solutions and therefore the SAT solvers can easily 

find the solution. 

 

C. Unique-Solution 3-SAT Instances 

 

In the work [13], two algorithms, G and G2 are provided. 

We briefly describe the algorithms and the theorems. 

Interested readers can refer to the original work for further 
detailed analysis. 

 

1) Naïve Instance Generation Algorithm G 

 

Algorithm G is a naive approach that operates by randomly 

selecting a solution and then generating clauses that could be 

satisfied by the solution. It is shown that it requires at least 

 

                       (3) 

 

to generate unique-solution instances with high probability.  

Theorem 1.[13] For any positive constant      if  

 

   
 

 
     

 

 
   

 

 
,        (4) 

then the formula   generated by algorithm   has only one 

solution with probability at least    . 
 

2) Modified Instance Generation Algorithm G2 
 

Algorithm G2 randomly selects a solution and generates the 

first   clauses by choosing clauses violated by other 

assignments that are only 1 bit different from the solution. 

From the      th to the  th clauses, G2 generates clauses 

that could be satisfied by the true assignment. It is shown that 

it requires approximately 

               (5) 

to generate unique-solution instances with high probability. 

 

 
 

Theorem 2. [13]For any given fixed   with           

and any fixed real ϵ with      , when 

 

       
 

 
       

      

  
 
 

 
   

       

 
 ,   (6) 

 

then the formula   generated by algorithm   has only one 

solution with probability at least    .  

 

We can see that   and    are algorithms that can generate 

unique solution 3-SAT instances with high success probability 

while the number of required clauses are high for   is as high 

as           while it is    for   . 

 

3) Instance Generators: Uniqe-PT1 & Unique-PT4 
 

In this section we discuss two main algorithms, Unique-PT1 

and Unique-PT4, for generating unique-solution 3-SAT 

instances and one ancillary padding algorithm that adds more 

clauses into instances generated by Unique-PT1 or Unique-

PT4 and still conforms to the given unique solution. Finally, 

we show a hybrid algorithm that combines the above three 

algorithms to generate unique-solution instances with the 

order parameter up to 
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               .        (7) 

 

An  -variable 3-SAT instance is considered extremely 

difficult when there is only one unique solution. There are 

various tough SAT generators, but the uniqueness is not 

guaranteed. Some unique-solution 3-SAT instances generate 

algorithms [13] but the uniqueness is probabilistic (of high 

probability), but not guaranteed. 
 

 We will build our generator based on two approaches, 

Unique-PT4 and Unique-PT1, respectively and hybridly. 

Generate a random solution  

 

           ,         (8)  

 

where          is the value of variable   . We then proceed 

with either one of the following approaches: 

 
Theorem 3. Each instance generated by algorithm Unique-

PT4 is of one unique solution. 

 

Proof. Assume there exists another solution  

 

                     (9)  

 

that differs from the true solution            , by at least 

one variable where             and            . Suppose 

the value of variable    is on which    and s disagree. If we 

collect the four DO-NOT-CARE clauses for variable   , we 

know that in order to satisfy all those four clauses, no matter 

what the value of    and    are,    must be of value    from s. 

Therefore, solution    cannot satisfy all clauses in the 

instance. We can further conclude that there exists only one 

solution for instances generated by unique-PT4.  

 
Theorem 4. Each instance generated by algorithm Unique-

PT1 is of one unique solution.  

 

Proof. Assume there exists another solution              

that differs from the true solution             by at least 

one variable where             and            . By 

Theorem 3, we know that 

 

               (10)  

and 

              (11) 
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for    to pass DO-NOT-CARE clauses. For the ith iteration of 

clause generation, where    , we know the values of 

randomly selected variables    and    are already determined 

in previous iterations. The clause generated in the ith iteration 

specifically determines the value of   . Therefore, for    to 

pass all the clauses, it must have exactly the same solution as 

 . If    and   differs at variable   , then solution    will 

definitely fail the clause generated during the iteration where 

value of    is specified. Therefore, solution    cannot satisfy 

all clauses in the instance if it differs from s by at least one 

variable. We can further conclude that there exists only one 

solution for instances generated by Unique-PT1. 
 

D. Tuning Tool Algorithms: Padding and Hybrid-1 

 

Unique-PT1 and Unique-PT4, can generate 3-SAT 

instances with order parameter approximately 1 and 4, 

respectively. In order to increase the hardness of an instance, it 

is be desirable to tune the order parameter by adding more 

clauses into the instance that still obeys the original solution. 

 

Corollary 1.The Padding algorithm randomly generates   

clauses that can be satisfied by the given solution. 
 

Proof. At the     iteration, a 3-CNF clause will violate the 

given solution            ,  when the variables (  ;   ; 

  ) are assigned the values (  ;   ;   ). That means if  

 

  
        

       
           (12)  

then the tuple  

(   =   ;    =   ;    =   )      (13) 

will violate the clause  

(OP(  
 ,   ∨OP(  

 ,   ∨ OP(  
 ,   ).   (14) 

  

Hence, we simply let    be the forbidden number we need to 

avoid when we randomly select a number between 0 and 7. By 

doing so, we avoid generating clauses that will conflict with 

the given solution  . Therefore, the clause 

(OP(  
 ,   ∨OP(  

 ,   ∨ OP(  
 ,    can always be satisfied 

by the tuple (   =   ;    =   ;    =   ). It is clear to see that 

for each 3-bit representation, we have 7 possible outcomes 

(clauses) that would not violate the given solution, therefore, 

we could add at most                    clauses. 

 
Lemma 1. The output instance of the Hybrid-1 algorithm has 
the order parameter α with exactly one unique solution. 

Proof. Option I: It is a simple combination of algorithm 

Unique-PT4 and algorithm Unique-PT1 and the purpose of 

each iteration is to nail down the selected undecided variable 

  .  

Therefore, at the end of the iterations, the clauses must be 

satisfied by the unique solution  , according to theorem 3 and 

theorem 4. When 

     
       

 
         (15), 

 we have accumulated    
       

 
  clauses and we accumulate 

anther       
       

 
   clauses when   reaches  . That gives 

us    clauses for running this algorithm through option 1. 
Option II: By theorem 4 and corollary 1, we immediately 

know that we have an instance of   clauses that can only be 

satisfied by the given unique solution  . Option II can have the 

ratio  up to approximately               as explained 
in the Padding algorithm. 
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V. TOOLS AND EXPERIMENTS 

 

A. Tools 

 

1) Generators 

 

The baseline generator we will use is the Tough Random K-

SAT generator [14] that generates random K-SAT instances, 

which is built upon latest generating techniques up to 2017. 

The other generator is our ETRSG algorithm. Both algorithms 
are explained in section IV.A 

 

2) Solver and Platform 

 
MiniSAT is a minimalistic, open-source SAT solver, 

developed to help researchers and developers alike get started 

on SAT. MiniSAT is released under the MIT license. 

MiniSAT utilizes Conflict Driven Clause Learning (CDCL) 

SAT solving with several other features such as dynamic 

variable ordering and clause deletion [15], [16]. A small 

glimpse into the inner workings of MiniSAT is provided as a 

basic introduction to conflict clause learning and to establish 

the basic idea behind CDCL SAT solvers. 

Fig. 1:    4, 400 instances, Square: ETRSG, Circle: TSG. 

ETRSG problems and the TSG problems began to relate more 
directly to each other, and the advantageous difficulty of the ETRSG 

problem was deemed inconsequential 

 

MiniSAT measures CPU time which, while valuable, is 
inconsequential as CPU time can change accordingly with 

better or worse hardware. It also provides other important 

measures that we can use to gauge effectiveness. It stores the 

number of times the solver was forced to restart, conflicts, 

decisions, propagations, inspections and conflict literals 

deleted, which are all machine independent. The basic 

operational functionality of the MiniSAT solver is as follows.  
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When MiniSAT is given a SAT problem, it solves the 

problem by choosing a primary variable to begin propagation 

of other variables. When a conflict occurs, as in one literal is 

assigned both a positive and negative value, the solver will 

store this conflicting clause and begin propagation again from 

an older assignment but will avoid generating the prior 

conflicting clause. If the solver moves back to the primary 

variable, it is then restarted with a different variable and 

propagation begins again. This is process is continually redone 

until a satisfying assignment to the problem is found and the 
problem is deemed satisfiable or until it is shown that no 

satisfiable solution can be made, thus deeming the problem 

unsatisfiable. These measures that MiniSAT uses are the 

metrics that we will use to gauge the difficulty of the ETRSG 

3-SAT instances. 

 

The ETRSG algorithm was implemented in Python. The 

testing environment was created in cloud9, which is a cloud 

based ubuntu IDE. The environment has 512Mb of available 

memory, 2Gb of disk space which was more than enough for 

development and testing. In the case of MiniSAT, the CDCL 
algorithm used is ultimately machine independent because 

only CPU time will get better or worse with more or less 

efficient hardware. Although, the times between the better and 

worse hardware can differ the algorithm will function the  

same way and have similar occurrences for restarts, 

conflicts, conflict literals, propagations, inspects, decisions 

and the rate of generating satisfiable instances. 

 

B. Experiments 

 

To compare the toughness of instances generated by TSG 

and ETRSG, we generate 3-SAT instances with test cases 

where     4, 4.24 and 5. With each  , the number of 

variables   is set as 100, 150, 200, 250, 300 and 350. With 

each       pair we generate 400 instances for both TSG and 

ETRSG. 

 

All the test problems were solved using the C instance of 

MiniSat V 1.4.1 and TSG version 1.1 K-SAT generator was 

used to generate the control problems. 

 
VI. DISCUSSION 

 

A. Critical Zone Exploration for ETRSG 

 

With the speculation that the critical phase transition zone 

might be different for ETRSG problems, it might be worth 
discussing the exploration of this new hot and cold zone of 

satisfiability. Since when    4, it yielded highly satisfiable 

problems as seen in Fig. 1, we speculate the critical phase 

transition zone might lie beyond this point. Furthermore, with 

evidence from Fig. 2, we speculate the crucial phase transition 

zone for ETRSG could be even beyond    4.24 as the 

ETRSG problems were all still highly satisfiable. The critical 

zone must occur before 5 as nearly all symmetric and TSG 

problems were unsatisfiable. In short, this new number must 

occur after 4.24 but before 5 and the problem of searching for 

this number can be approached in a multitude of ways. This 

could be investigated in another study. 

 
B. ETRSG Toughness 

 

As pointed out earlier, problems that occur with the typical 

critical phase transition number 4.24 might turn out to be easy 

to solve [9], also,  the harder instances may  need finer 

characterization metrics. As shown in this experiment, an 

equal recurrence number for all variables could be one 

character that can be used to describe this set of harder 

problems. As described previously when    4.24 ETRSG 

still generates with an increasingly high probability (0.75 to 1) 

solvable hard instances while TSG has a decreasing 
probability (0.63 to 1). The success rate drops almost to 0 

when    5. As for other measures, such as CPU time, restart, 

conflict and decision (and so on), are of a higher order of 

magnitude. A follow up study would focus on scaling   

between 4.24 and 5 for ETRSG while keeping solvable 

probability high and the magnitude of difficulty increasing. 

Another investigation is needed to determine the cause of 

success probability dip for only 100 and 150 variables when 

   4 transitions to     4.24. It could be due to numerical 
fluctuation or some hidden factors to be discovered.  

 

C. Tunable Unique 

 

We presented a set of tunable algorithms that can 

deterministically generate unique-solution instances of 3-SAT 

problems. These algorithms serve as valuable tools to help us 

better understand the computational hardness of 3-SAT from a 

numerical perspective. The generated problems can be used 

for benchmarking performances of different 3-SAT solving 

algorithms including even the novel quantum computing 

approach. However, we also expect additional applications of 
this algorithms such as by adding only one clause to suppress 

the unique solution, we can generate negative instances. This 

kind of problems can then be used to study the closely related 

MAX-3SAT problem and benchmark algorithms aiming to 

crack MAX-3SAT. 

 

In comparison to the non-deterministic algorithm [13] 

proposed earlier in the literature, our algorithm can 

deterministically generate unique-solution instances (instead 

of being a probabilistic ones such that some generated 

instances admit multiple solutions). This deterministic 
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property is extremely desirable as the number of “hard 

problems" (as defined in Ref. [9]) are extremely rare. 

 

Fig. 2:    4.24, 400 instances, Square: ETRSG, Circle: TSG. When 

more than 250 variables, ETRSG instances significantly outperform 
TSG instances in all aspects, except with slight outperformance in 
restart. ETRSG has a higher probability of generating solvable 
instances. 

 
 
 
 
 
 
 
 

 
 
 

 
 

 

 
 
 

 
 
 

 

 
 
 
 

 

 
 
 
Fig. 3:    5, 400 instances, Square: ETRSG, Circle: TSG. Similar to 

   4.24, but more significant in restart. The probability of 

generating solvable instances drops quickly to 0 for both since 5 is 
greater than the critical phase transition number. 
 

VII. CONCLUSION AND FUTURE WORK 

 
As it shows in the experiment ETRSG 3-SAT problems 

tend to have a higher level of difficulty. This leads us to 

believe that the landscape of this type of problem might have 

many local minimums and only one unique global minimum. 

With such a landscape, a regular solver using Heuristics might 

be deceived to believe the local minimum is the global or it 

would take many more resources (time, space) for the solver 

to attack. To avoid bias, that is difficulty that has some solver 
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dependency, we should translate the numerically-verified 

difficult problems into landscape problems.  

 

Studying the landscape problem will allow us to better 

understand the difficulty of symmetric sat problems when 

compared to the relative ease of TSG 3-SAT problems. Also, 

as stated prior in section VI.A a new phase transition number 

might exist for symmetric 3-SAT problems as the 4.24 ratio 

applies mainly to general 3-SAT problems. This new phase 

transition number will also help to shed light on difficulty and 
satisfiability bounds. Finally, a new partition-based solver that 

we are developing (for another study) can be used to tackle 

symmetric problems as it would be blind to the constraints of 

the problem as they would be broken down into smaller and 

more manageable problems. 

 

As stated in section VI.C unique-solution algorithms serve 

as valuable tools to help us elucidate and quantify the 

computational hardness of 3-SAT. these problems could be 

used to develop a novel quantum computing solver and to 

study MAX-3SAT problems. Even the deterministic nature of 
our algorithm is highly desirable the number of “hard 

problems" (as defined in Ref. [9]) are extremely rare. We can 

explore more of these problems in a later study and even run 

comparison tests like what was done with our ETRSG 

algorithm. It would also be of interest to explore the landscape 

of these unique-solution problems in future work.  
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