
 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 23 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

EXPLORATION OF HARD TO SOLVE 3-SAT PROBLEMS

Robert Amador, Chen-Fu Chiang and Chang-Yu Hsieh

Abstract—We designed and implemented an efficient tough

random symmetric 3-SAT generator and propose two

deterministic algorithms that efficiently generate 3-SAT instances

with a unique solution. We quantify the first algorithms hardness

in terms of CPU time, numbers of restarts, decisions,

propagations, conflicts and conflicted literals that occur when a

solver tries to solve 3-SAT instances. In this experiment, the

clause variable ratio was chosen to be around the conventional

critical phase transition number 4.24. The experiment shows that

instances generated by our generator are significantly harder

than instances generated by the Tough K-SAT generator. The

two deterministic algorithms generate 3-SAT instances with the

number of clauses scaling as 4n, where n is the number of

variables, and (n+6), respectively. By combining these two

algorithms along with a simple padding algorithm, we prove a

hybrid algorithm that can generate n-variable instances with the

number of clauses that scale between (n+6) and 7n(n-1)(n-2).

Overall, all proposed SAT generators seek to explore unique

difficult to solve SAT problems.

 Keywords—3-SAT, Satisfiability, Efficient Tough Random

Symmetric 3-SAT Generator, Tunable Unique-Solution, Critical

Phase Transition
I. INTRODUCTION

HE 3-satisfiability problem (3-SAT) can be succinctly

summarized as follows: find an n-binary-variable

configuration to satisfy a conjunction of clauses with each

being a disjunction of three literals. 3-SAT is a widely studied
problem for a multitude of reasons. Primarily, it plays a

crucial role in the historical development of theoretical

computer science. For instance, it was the first identified

Nondeterministic Polynomial complete (NP-

complete)problem,[1], [2] and it is one of the most well-

studied examples in the inter-disciplinary research program

involving combinatorial optimization [3], [4], computer

science, and statistical physics [5], [6]. Theoretical

developments aside, the 3-SAT problem also plays a critical

role in many applications such as model checking, planning in

artificial intelligences and software verifications. Hence, for
both theoretical and practical reasons, there are many strong

motivations to devise more efficient algorithms to attack such

a problem.

Robert Amador was with the Department of Computer Science, State

University of New York Polytechnic Institute, Utica, NY~13502, USA. (e-

mail: amadorr@sunypoly.edu).

Chen-Fu Chiang is with the Department of Computer Science, State

University of New York Polytechnic Institute, Utica, NY~13502, USA. (e-

mail: chiangc@sunypoly.edu).

II. PROBLEM STATEMENT & MOTIVATION

By invoking statistical physics methods and concepts we have
built a comprehensive picture of the complex structures that

embody the classical 3-SAT problem. For instance, the

concept of phase transitions in statistical physics has been

adopted to elucidate the SAT-UNSAT phase transition of 3-

SAT problems. In this statistical framework, the ratio

parameter,

 (1)

for the phase transition is taken to be the ratio of the number

of clauses to the number of

variables . The critical value of this order parameter is

 4.2 (2)

 [7],[8]which clearly drawsa boundary in the space of all 3-

SAT instances. On one side of this boundary where
most instances are unsatisfiable. On the other side of this

boundary, most problems are satisfiable.

A. Tough Random Symmetric 3-SAT

Via our Efficient Tough Random Symmetric 3-

SATgenerator (ETRSG) we explore 3-SAT problems with a

critical phase transition value of 4.24 in comparison to 3-SAT

problems generated by a Tough Random K-SAT Generator

(TSG) to better understand how the critical phase transition

value effects solvability of symmetric 3-SAT Problems.

Studying this specific subset of 3-SAT problems will allow for

further research into solving SAT problems more efficiently.

B. Tunable Unique-Solution 3-SAT

The Unique-PT1 & Unique-PT4 algorithms can generate 3-

SAT instances with a wide range of values for the order

parameter , i.e. we can have various ratios of number of

clauses to the number of variables. This is a critical point as

the earlier numerical investigations [9] did not conclude what

could be an optimal value of (with respect to) to increase

the chance that a random generation algorithm could output

Chang-Yu Hsieh worked on this while a postdoc at Singapore-MIT

Alliance for Research and Technology, 1 CREATE Way, #10-01 & #09-03

CREATE Tower Singapore 138602

T

 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 24 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

such a hard problem. For our ongoing investigations (to be

reported in a separate study), we would attempt to clarify the

optimality of with respect to (number of variables).

III. BACKGROUND

A. ETRSG and TSG

The commonly used parameters for SAT solvers and

generators are: : the number of variables, : the number of

clauses, : the ratio, which is determined by . For the

efficient tough random symmetric 3-SAT generator, the

formula is of variables with the ratio number that should

have clauses. In this work, we choose to be the phase

transition number 4.24. Since each clause has 3 literals in all

3-SAT problems each variable is expected to appear

approximately times in

Tough SAT Generator is one of the more competitive

generators used for generating tough SAT instances. We

would like to compare the toughness of instances generated by

our generator and TSG in the following categories: (a)

frustrations caused by the generator to the SAT solver and (b)

probability of generating instances that have at least one

solution and by extension are solvable. The frustration rate can

be quantified by the resources used by the solver, such as CPU

time, restarts, conflicts and decisions. The probability can be

quantified by the ratio between instances with solutions and
the total instances generated by the generator.

The contribution of this part of the work is to devise a way

to generate harder 3-SAT problems and verify their hardness.

We seek to generate harder instances more reliably and

efficiently. The hardness is quantified by the measures given

by the solver the instances require the solver to consume more

resources and make more modifications. Our ETRSG

algorithm is more reliable as it generates problems with a

higher probability of being solvable. Our algorithm is also

efficient as the generation process is almost linear time.

B. Unique-PT1 & Unique-PT4

Unique-PT1 & Unique-PT4, employ a naive approach that

turns out to be a suitable algorithm to be run on an adiabatic

quantum computer (AQC), such as D-Wave's quantum

annealing approach [10], [11]. As such these algorithms will

be considered separately in this work as they are inspired by

our recent attempt to analyze the performance of AQC on

solving 3-SAT problems.

For technical reasons, theoretical estimates of the AQC run-
time can be more elegantly done if we are confined to unique-

solution instances (i.e. if we only consider 3-SAT cases with a

unique solution). We emphasize that the need to consider

unique-solution instances is by no means a limitation on the

computational capability of an AQC; rather it just makes the

theoretical analyses easier. Nevertheless, this severe restriction

has initially concerned us as the difficulty of 3-SAT instances

surrounding a SAT-UNSAT phase transition is an “average"

(or statistical) property of all problems close to this order

parameter around 4:2 in the problem space [7], [8]. There is no

theoretical analysis implying (with high probability) one

would be able to randomly generate “difficult instances" when
restricted to such a small subset of all problems surrounding

the critical value () of the order parameter. This

concern has apparently affected other researchers looking into

similar issues with AQC. Much to our delight, in our quest to

clarify the hardness of unique-solution problems, we have

come across a set of recently identified “hard" problems [9] in

this subspace. These problems can be colloquially described as

“3-SAT instances with a unique solution while having many

configurations violating just few clauses". In the energy-

counting point of view, a large fraction of the configurations

are squeezed to a small window of energy values right above
the zero-energy state (the unique solution). This colloquial

description certainly reminds one of the notorious protein

folding problem [12]. Furthermore, to the contrary of

conventional wisdom, extensive numerical investigations

indicated these unique-solution hard instances are more easily

found when the order parameter is smaller than the critical

value (i.e. <).

IV. ALGORITHMS

 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 25 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

A. ETRSG & TSG Algorithms

In following paragraph, we describe the TSG algorithm

(alg.1) and our efficient tough random symmetric 3-SAT

generator (ETRSG) algorithm (alg. 2). They can both generate

SAT instances efficiently in almost linear time.

The TSG algorithm generates clauses sequentially. In the

3-SAT case, each clause is generated by randomly picking 3
variables from the variable list and with 0.5 probability of

negating the chosen variable. With the disjunction of the

literals, a clause is formed, and the problem is complete.

The ETRSG algorithm also generates clauses

sequentially. But initially it must generate a big sequence

that is of subsequences. Each subsequence is a random

arrangement of variables. To avoid adjacent subsequences

from forming an invalid clause, such as duplicated variables or

literals, we must call the RndGen-Verif subroutine (alg. 3) to

ensure its validity. If two adjacent sequences are jointly
required to produce a clause, the ETRSG algorithm checks the

adjacent subsequences and to make sure a variable

would not appear more than once in that clause.

Once , of length , is generated, each variable

appears times and then we can generate clauses

sequentially from position 1 until position of . For each

position we also randomly assign the negation operation.

B. Choice of Recurrence Number

The recurrence number in ETRSG determines the number of

times each variable must appear in the formula. In this paper,

 is chosen based on selecting the ratio number close to the
well-known phase transition number 4.24. A phase transition

[5], [6] is a concept utilized in statistical physics but it can also

be used to explain satisfiable and unsatisfiable transitions in 3-

SAT problems. However, even instances within the critical

phase transition number may be easy to solve when a modern

SAT solver is used. overall, we use 4.24 as our phase

transition number because that could be where more tough 3-

SAT instances exist.

The subset of SAT problems with a critical phase transition

number of 4.24 may be exponentially rare among 3-SAT
instances [9]. One of the major goals of this experiment is to

figure out some of those exponentially rare instances and

characterize them. The critical phase transition number is one

of the characteristics of hard to solve 3-SAT instances. In this

experiment, we chose 4, 4.24 and 5. The rationale is that

SAT instances with a ratio number greater than the critical

phase transition number will almost always be rejected as

 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 26 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

there is no likely solution. SAT instances with a ratio number

smaller than the critical phase transition number will likely

have many solutions and therefore the SAT solvers can easily

find the solution.

C. Unique-Solution 3-SAT Instances

In the work [13], two algorithms, G and G2 are provided.

We briefly describe the algorithms and the theorems.

Interested readers can refer to the original work for further
detailed analysis.

1) Naïve Instance Generation Algorithm G

Algorithm G is a naive approach that operates by randomly

selecting a solution and then generating clauses that could be

satisfied by the solution. It is shown that it requires at least

 (3)

to generate unique-solution instances with high probability.

Theorem 1.[13] For any positive constant if

, (4)

then the formula generated by algorithm has only one

solution with probability at least .

2) Modified Instance Generation Algorithm G2

Algorithm G2 randomly selects a solution and generates the

first clauses by choosing clauses violated by other

assignments that are only 1 bit different from the solution.

From the th to the th clauses, G2 generates clauses

that could be satisfied by the true assignment. It is shown that

it requires approximately

 (5)

to generate unique-solution instances with high probability.

Theorem 2. [13]For any given fixed with

and any fixed real ϵ with , when

 , (6)

then the formula generated by algorithm has only one

solution with probability at least .

We can see that and are algorithms that can generate

unique solution 3-SAT instances with high success probability

while the number of required clauses are high for is as high

as while it is for .

3) Instance Generators: Uniqe-PT1 & Unique-PT4

In this section we discuss two main algorithms, Unique-PT1

and Unique-PT4, for generating unique-solution 3-SAT

instances and one ancillary padding algorithm that adds more

clauses into instances generated by Unique-PT1 or Unique-

PT4 and still conforms to the given unique solution. Finally,

we show a hybrid algorithm that combines the above three

algorithms to generate unique-solution instances with the

order parameter up to

 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 27 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

 . (7)

An -variable 3-SAT instance is considered extremely

difficult when there is only one unique solution. There are

various tough SAT generators, but the uniqueness is not

guaranteed. Some unique-solution 3-SAT instances generate

algorithms [13] but the uniqueness is probabilistic (of high

probability), but not guaranteed.

 We will build our generator based on two approaches,

Unique-PT4 and Unique-PT1, respectively and hybridly.

Generate a random solution

 , (8)

where is the value of variable . We then proceed

with either one of the following approaches:

Theorem 3. Each instance generated by algorithm Unique-

PT4 is of one unique solution.

Proof. Assume there exists another solution

 (9)

that differs from the true solution , by at least

one variable where and . Suppose

the value of variable is on which and s disagree. If we

collect the four DO-NOT-CARE clauses for variable , we

know that in order to satisfy all those four clauses, no matter

what the value of and are, must be of value from s.

Therefore, solution cannot satisfy all clauses in the

instance. We can further conclude that there exists only one

solution for instances generated by unique-PT4.

Theorem 4. Each instance generated by algorithm Unique-

PT1 is of one unique solution.

Proof. Assume there exists another solution

that differs from the true solution by at least

one variable where and . By

Theorem 3, we know that

 (10)

and

 (11)

 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 28 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

for to pass DO-NOT-CARE clauses. For the ith iteration of

clause generation, where , we know the values of

randomly selected variables and are already determined

in previous iterations. The clause generated in the ith iteration

specifically determines the value of . Therefore, for to

pass all the clauses, it must have exactly the same solution as

 . If and differs at variable , then solution will

definitely fail the clause generated during the iteration where

value of is specified. Therefore, solution cannot satisfy

all clauses in the instance if it differs from s by at least one

variable. We can further conclude that there exists only one

solution for instances generated by Unique-PT1.

D. Tuning Tool Algorithms: Padding and Hybrid-1

Unique-PT1 and Unique-PT4, can generate 3-SAT

instances with order parameter approximately 1 and 4,

respectively. In order to increase the hardness of an instance, it

is be desirable to tune the order parameter by adding more

clauses into the instance that still obeys the original solution.

Corollary 1.The Padding algorithm randomly generates

clauses that can be satisfied by the given solution.

Proof. At the iteration, a 3-CNF clause will violate the

given solution , when the variables (; ;

) are assigned the values (; ;). That means if

 (12)

then the tuple

(= ; = ; =) (13)

will violate the clause

(OP(
 , ∨OP(

 , ∨ OP(
 ,). (14)

Hence, we simply let be the forbidden number we need to

avoid when we randomly select a number between 0 and 7. By

doing so, we avoid generating clauses that will conflict with

the given solution . Therefore, the clause

(OP(
 , ∨OP(

 , ∨ OP(
 , can always be satisfied

by the tuple (= ; = ; =). It is clear to see that

for each 3-bit representation, we have 7 possible outcomes

(clauses) that would not violate the given solution, therefore,

we could add at most clauses.

Lemma 1. The output instance of the Hybrid-1 algorithm has
the order parameter α with exactly one unique solution.

Proof. Option I: It is a simple combination of algorithm

Unique-PT4 and algorithm Unique-PT1 and the purpose of

each iteration is to nail down the selected undecided variable

 .

Therefore, at the end of the iterations, the clauses must be

satisfied by the unique solution , according to theorem 3 and

theorem 4. When

 (15),

 we have accumulated

 clauses and we accumulate

anther

 clauses when reaches . That gives

us clauses for running this algorithm through option 1.
Option II: By theorem 4 and corollary 1, we immediately

know that we have an instance of clauses that can only be

satisfied by the given unique solution . Option II can have the

ratio up to approximately as explained
in the Padding algorithm.

 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 29 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

V. TOOLS AND EXPERIMENTS

A. Tools

1) Generators

The baseline generator we will use is the Tough Random K-

SAT generator [14] that generates random K-SAT instances,

which is built upon latest generating techniques up to 2017.

The other generator is our ETRSG algorithm. Both algorithms
are explained in section IV.A

2) Solver and Platform

MiniSAT is a minimalistic, open-source SAT solver,

developed to help researchers and developers alike get started

on SAT. MiniSAT is released under the MIT license.

MiniSAT utilizes Conflict Driven Clause Learning (CDCL)

SAT solving with several other features such as dynamic

variable ordering and clause deletion [15], [16]. A small

glimpse into the inner workings of MiniSAT is provided as a

basic introduction to conflict clause learning and to establish

the basic idea behind CDCL SAT solvers.

Fig. 1: 4, 400 instances, Square: ETRSG, Circle: TSG.

ETRSG problems and the TSG problems began to relate more
directly to each other, and the advantageous difficulty of the ETRSG

problem was deemed inconsequential

MiniSAT measures CPU time which, while valuable, is
inconsequential as CPU time can change accordingly with

better or worse hardware. It also provides other important

measures that we can use to gauge effectiveness. It stores the

number of times the solver was forced to restart, conflicts,

decisions, propagations, inspections and conflict literals

deleted, which are all machine independent. The basic

operational functionality of the MiniSAT solver is as follows.

 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 30 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

When MiniSAT is given a SAT problem, it solves the

problem by choosing a primary variable to begin propagation

of other variables. When a conflict occurs, as in one literal is

assigned both a positive and negative value, the solver will

store this conflicting clause and begin propagation again from

an older assignment but will avoid generating the prior

conflicting clause. If the solver moves back to the primary

variable, it is then restarted with a different variable and

propagation begins again. This is process is continually redone

until a satisfying assignment to the problem is found and the
problem is deemed satisfiable or until it is shown that no

satisfiable solution can be made, thus deeming the problem

unsatisfiable. These measures that MiniSAT uses are the

metrics that we will use to gauge the difficulty of the ETRSG

3-SAT instances.

The ETRSG algorithm was implemented in Python. The

testing environment was created in cloud9, which is a cloud

based ubuntu IDE. The environment has 512Mb of available

memory, 2Gb of disk space which was more than enough for

development and testing. In the case of MiniSAT, the CDCL
algorithm used is ultimately machine independent because

only CPU time will get better or worse with more or less

efficient hardware. Although, the times between the better and

worse hardware can differ the algorithm will function the

same way and have similar occurrences for restarts,

conflicts, conflict literals, propagations, inspects, decisions

and the rate of generating satisfiable instances.

B. Experiments

To compare the toughness of instances generated by TSG

and ETRSG, we generate 3-SAT instances with test cases

where 4, 4.24 and 5. With each , the number of

variables is set as 100, 150, 200, 250, 300 and 350. With

each pair we generate 400 instances for both TSG and

ETRSG.

All the test problems were solved using the C instance of

MiniSat V 1.4.1 and TSG version 1.1 K-SAT generator was

used to generate the control problems.

VI. DISCUSSION

A. Critical Zone Exploration for ETRSG

With the speculation that the critical phase transition zone

might be different for ETRSG problems, it might be worth
discussing the exploration of this new hot and cold zone of

satisfiability. Since when 4, it yielded highly satisfiable

problems as seen in Fig. 1, we speculate the critical phase

transition zone might lie beyond this point. Furthermore, with

evidence from Fig. 2, we speculate the crucial phase transition

zone for ETRSG could be even beyond 4.24 as the

ETRSG problems were all still highly satisfiable. The critical

zone must occur before 5 as nearly all symmetric and TSG

problems were unsatisfiable. In short, this new number must

occur after 4.24 but before 5 and the problem of searching for

this number can be approached in a multitude of ways. This

could be investigated in another study.

B. ETRSG Toughness

As pointed out earlier, problems that occur with the typical

critical phase transition number 4.24 might turn out to be easy

to solve [9], also, the harder instances may need finer

characterization metrics. As shown in this experiment, an

equal recurrence number for all variables could be one

character that can be used to describe this set of harder

problems. As described previously when 4.24 ETRSG

still generates with an increasingly high probability (0.75 to 1)

solvable hard instances while TSG has a decreasing
probability (0.63 to 1). The success rate drops almost to 0

when 5. As for other measures, such as CPU time, restart,

conflict and decision (and so on), are of a higher order of

magnitude. A follow up study would focus on scaling

between 4.24 and 5 for ETRSG while keeping solvable

probability high and the magnitude of difficulty increasing.

Another investigation is needed to determine the cause of

success probability dip for only 100 and 150 variables when

 4 transitions to 4.24. It could be due to numerical
fluctuation or some hidden factors to be discovered.

C. Tunable Unique

We presented a set of tunable algorithms that can

deterministically generate unique-solution instances of 3-SAT

problems. These algorithms serve as valuable tools to help us

better understand the computational hardness of 3-SAT from a

numerical perspective. The generated problems can be used

for benchmarking performances of different 3-SAT solving

algorithms including even the novel quantum computing

approach. However, we also expect additional applications of
this algorithms such as by adding only one clause to suppress

the unique solution, we can generate negative instances. This

kind of problems can then be used to study the closely related

MAX-3SAT problem and benchmark algorithms aiming to

crack MAX-3SAT.

In comparison to the non-deterministic algorithm [13]

proposed earlier in the literature, our algorithm can

deterministically generate unique-solution instances (instead

of being a probabilistic ones such that some generated

instances admit multiple solutions). This deterministic

 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 31 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

property is extremely desirable as the number of “hard

problems" (as defined in Ref. [9]) are extremely rare.

Fig. 2: 4.24, 400 instances, Square: ETRSG, Circle: TSG. When

more than 250 variables, ETRSG instances significantly outperform
TSG instances in all aspects, except with slight outperformance in
restart. ETRSG has a higher probability of generating solvable
instances.

Fig. 3: 5, 400 instances, Square: ETRSG, Circle: TSG. Similar to

 4.24, but more significant in restart. The probability of

generating solvable instances drops quickly to 0 for both since 5 is
greater than the critical phase transition number.

VII. CONCLUSION AND FUTURE WORK

As it shows in the experiment ETRSG 3-SAT problems

tend to have a higher level of difficulty. This leads us to

believe that the landscape of this type of problem might have

many local minimums and only one unique global minimum.

With such a landscape, a regular solver using Heuristics might

be deceived to believe the local minimum is the global or it

would take many more resources (time, space) for the solver

to attack. To avoid bias, that is difficulty that has some solver

 IT in Industry, vol. 7, no.2, 2019 Published online 09-Sept 2019

Copyright © Authors 32 ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

dependency, we should translate the numerically-verified

difficult problems into landscape problems.

Studying the landscape problem will allow us to better

understand the difficulty of symmetric sat problems when

compared to the relative ease of TSG 3-SAT problems. Also,

as stated prior in section VI.A a new phase transition number

might exist for symmetric 3-SAT problems as the 4.24 ratio

applies mainly to general 3-SAT problems. This new phase

transition number will also help to shed light on difficulty and
satisfiability bounds. Finally, a new partition-based solver that

we are developing (for another study) can be used to tackle

symmetric problems as it would be blind to the constraints of

the problem as they would be broken down into smaller and

more manageable problems.

As stated in section VI.C unique-solution algorithms serve

as valuable tools to help us elucidate and quantify the

computational hardness of 3-SAT. these problems could be

used to develop a novel quantum computing solver and to

study MAX-3SAT problems. Even the deterministic nature of
our algorithm is highly desirable the number of “hard

problems" (as defined in Ref. [9]) are extremely rare. We can

explore more of these problems in a later study and even run

comparison tests like what was done with our ETRSG

algorithm. It would also be of interest to explore the landscape

of these unique-solution problems in future work.

ACKNOWLEDGMENT

R. A. and C. C. gratefully acknowledge the support from

the State University of New York Polytechnic Institute.

REFERENCES

[1] S. A. Cook, “The complexity of theorem-proving procedures,” in

Proceedings of the third annual ACM symposium on Theory of

computing, 1971.

[2] R. M. Karp, “Reducibility among combinatorial problems,” in

Complexity of computer computations, Springer, 1972, pp. 85-103.

[3] C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation,

and complexity classes,” Journal of computer and system sciences, vol.

43, pp. 425-440, 1991.

[4] R. Marino, G. Parisi and F. Ricci-Tersenghi, “The backtracking survey

propagation algorithm for solving random K-SAT problems,” Nature

communications, vol. 7, p. 12996, 2016.

[5] S. Cocco and R. Monasson, “Statistical physics analysis of the

computational complexity of solving random satisfiability problems

using backtrack algorithms,” The European Physical Journal B-

Condensed Matter and Complex Systems, vol. 22, pp. 505-531, 2001.

[6] A. Percus, G. Istrate and C. Moore, Computational complexity and

statistical physics, OUP USA, 2006.

[7] B. A. Huberman and T. Hogg, “Phase transitions in artificial intelligence

systems,” Artificial Intelligence, vol. 33, pp. 155-171, 1987.

[8] M. Mézard, G. Parisi and R. Zecchina, “Analytic and algorithmic

solution of random satisfiability problems,” Science, vol. 297, pp. 812-

815, 2002.

[9] M. Žnidarič, “Scaling of the running time of the quantum adiabatic

algorithm for propositional satisfiability,” Physical Review A, vol. 71, p.

062305, 2005.

[10] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love and M. Head-Gordon,

“Simulated quantum computation of molecular energies,” Science, vol.

309, no. 5741, pp. 1704-1707, 2005.

[11] S. Boixo, V. N. Smelyanskiy, A. Shabani, S. V. Isakov, M. Dykman, V.

S. Denchev, M. H. Amin, A. Y. Smirnov, M. Mohseni and H. Neven,

“Computational multiqubit tunnelling in programmable quantum

annealers,” Nature Communications, vol. 7, 2016.

[12] B. Berger and T. Leighton, “Protein folding in the hydrophobic-

hydrophilic (HP) model is NP-complete,” Journal of Computational

Biology, vol. 5, no. 1, pp. 27-40, 1998.

[13] M. Motoki and R. Uehara, “Unique solution instance generation for the

3-Satisfiability (3SAT) problem,” SAT, pp. 293-305, 2000.

[14] https://toughsat.appspot.com/, “Tough SAT generation,” 2017.

[15] N. Een, “MiniSat: A SAT solver with conflict-clause minimization,” in

Proc. SAT-05: 8th International Conference on Theory and Applications

of Satisfiability Testing, 2005.

[16] N. Eén and A. Biere, “Effective preprocessing in SAT through variable

and clause elimination,” in International conference on theory and

applications of satisfiability testing, 2005.

Robert Amador studies computer and information science and received his

master’s from SUNY Polytechnic institute. His research interests include

artificial intelligence and machine learning.

Dr. Chen-Fu Chiang studies computer science and received his master’s

from the University of Pennsylvania and his PhD from the university of

Central Florida. He is currently an assistant professor in the Computer Science

department at the University of New York Polytechnic Institute. His research

focus is on quantum computation, theoretical computation and artificial

intelligence.

Dr. Chang-Yu Hsieh studies physics. He received his PhD from the

University of Ottawa Canada. Upon his graduation, Dr. Hsieh had been

conducting research in quantum system as postdocs in University of Toronto

and MIT. His research focus is on complexity, near term quantum systems and

quantum algorithms.

