Fast Automatized Parameter Adaption Process of CNC Milling Machines Under the Use of Perception Based Artificial Intelligence
Abstract
Keywords
References
Sáenz de Argandona E., Aztiria A., Garcia C., AranaN., Izaguirre A., Fillatreau P. ’Forming processes control by means of artificial intelligence techniques’. Journal of Robotics and Computer-Integrated Manufacturing,2008, doi: 10.1016/j.rcim.2008.03.014.
Europäische Kommission, ’Mitteilung der Kommission an das Europäische Parlament, den Europäischen Rat, den Europäischen Wirtschafts- und Sozialausschuss und den Ausschuss der Regionen: Green Deal der Europäischen Union’, Brüssel, 2019.
Romano P., ’European Manufacture of the Future, role of research and education for E European leadership’, MANUFUTURE 2003 Conference, Italy, 2003.
Schlosser J. M., Schneider R., Rimkus W., Kelsch R., Gerstner F., Harrison D. K., Grant R. J., ’Material and simulation modelling of a crash beam performance – a comparison study showing the potential for weight savings using warm-formed ultra-high strength aluminium alloys’, Journal of Physics, 2017, Vol. 896, pp. 12091, DOI 10.1088/17426596/896/1/012091
Feldmann S., Kempter G., Esslinger R., Tran H. T., ’Support of Image- Based Quality Assessment in Discrete Production Scenarios through AI- Based Decision Support’, 13th International Conference on Advancements in Computational Sciences, ICACTE, 2020, ISBN: 978-1- 4503-7732-4
Iandola F. N., Han S., Moskewicz M. W., Ashraf K., Dally W. J., Keutzer K., ’SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡0.5MB model size, 2016, arXiv:1602.07
[Online]. Available at: https://www.wirtschaft-digital-bw.de/ki-made-in- bw/innovationswettbewerb-ki-fuer-kmu/simki-echtzeitdatenerfassung- und-parameterkorrektur, 2020
8. [Online] x-technik IT und Medien GmbH, ’DMU 65 monoBLOCK CNC universal milling machine’. [Online]. Available at: https: // https://www.zerspanungstechnik.com/bericht/horizontal- bearbeitungszentren/dmu-65-h-monoblock_mit-bearbeitungszentrum- maximal-flexibel-in-der-massenproduktion_2022-01-01, accessed in November 2022.
Hoffmann Group, Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik, ’Zerspanungshandbuch: Bohren, Gewinde, Senken, Reiben, Sägen, Fräsen, Drehen, Spanen, Präzisions-schleifen’, 2. Aufl. München: Hoffmann Group, 2014, ISBN: 3-00-016882-6
Landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 0.5 MB model size." arXiv preprint arXiv:1602.07360 (2016).
Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimisation." arXiv preprint arXiv:1412.6980 (2014).
Rong W., Li Z., Zhang W., Sun L., An improved Canny edge detection algorithm, IEEE International Conference on Mechatronics and Automation, 2016, doi: 10.1109/ICMA.2014.6885761
Russakovsky, O., Deng, J., Su, H., et al. ’ImageNet LargeScale Visual Recognition Challenge’, International Journal of Computer Vision (IJCV). Vol 115, Issue 3, 2015, arXiv:1409.0575v3
Feldmann, M. Schmiedt, J. M. Schlosser, W. Rimkus, T. Stempfle, C. Rathmann, ’Recursive quality optimisation of a smart forming tool under the use of perception-based hybrid datasets for training of a Deep Neural Network’, Journal of Discover Artificial Intelligence, 2022, doi: 10.1007/s44163-022-00034-4
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.